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Abstract

Existing works on rumor resolution have shown
great potential in recognizing word appear-
ance and user participation. However, they
ignore the intrinsic propagation mechanisms
of rumors and present poor adaptive ability
when unprecedented news emerges. To exploit
the fine-grained rumor diffusion patterns and
generalize rumor resolution methods, we for-
mulate a predecessor task to identify trigger-
ing posts, and then exploit their characteristics
to facilitate rumor verification. We design a
tree-structured annotation interface and extend
PHEME dataset with labels on the message
level. Data analysis shows that triggers play
a critical role in verifying rumors and present
similar lingual patterns across irrelevant events.
We propose a graph-based model considering
the direction and interaction of information
flow to implement role-aware rumor resolution.
Experimental results demonstrate the effective-
ness of our proposed model and progressive
scheme.

1 Introduction

With the expansion of the Internet, online informa-
tion tends to spread quickly and widely including
fake news, misinformation and rumors, the last of
which is defined as circulating stories unverifiable
or deliberately false (DiFonzo and Bordia, 2007).
Especially in current situation with infectious epi-
demics and intensive international relationships, re-
searchers have witnessed more than 900% growth
in the number of English fact-checks during the
COVID-19 outbreak. (Brennen et al., 2020). Auto-
matically verifying rumors has become an urgent
need for individuals and society.

Conventional methods for rumor resolution de-
pend on exploiting the evolutionary characteristics
of content and spreaders (Kwon et al., 2013; Ma
et al., 2015). Benefiting from various attention
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Two police officers have been injured in 
a shooting in #Montrouge in southern 
#Paris there is no direct link with the 
#CharlieHebdo attack

How the hell can you say there is 
no direct link, what proof do you 
have to prove this.

An intended shooting spree for 
policeman. yeah BBC worded 
it decent enough

Amplify

Deny

Clarify

Figure 1: An illustration of rumor cascades and typical
roles of messages helpful for rumor verification.

mechanisms, there is a growing tendency to re-
trieve evidential messages, indicative tokens and
critical users to enhance interpretability (Ma et al.,
2019; Lu and Li, 2020; Wu et al., 2020a). How-
ever, capturing patterns from historical records
faces great challenges while transferring to un-
precedented events as rumors evolve quickly and
recur infrequently. Besides, extracting features of
malicious users skips over the immediate indication
and allusive roles of the content itself.

Recently, researchers are dedicated to investi-
gating the intrinsic mechanism of rumor propa-
gation rather than linguistic or rhetorical features.
Vosoughi et al. (2018) reveal that it is the informa-
tion novelty that stimulates discussion desire which
makes rumors spread faster and deeper. Choi et al.
(2020) manage to locate echo chamber members
who tend to amplify rumor threads and find them
responsible for viral propagation. N. Zehmakan
and Galam (2020) divide rumor participants into 3
groups (seeds who adamantly convince the truth,
agnostics who firmly reject and others) and analyze
their roles during diffusion. Inspired by these soci-
ological findings, we propose to explore and model
different roles of messages as rumor evolves.

Figure 1 illustrates three types of messages with
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triggering effects via a cascade instance drawn
from PHEME dataset (Zubiaga et al., 2016; Kochk-
ina et al., 2018). The source tweet seemingly re-
ports objectively and amplifies discussion topics
regard to a shooting event. After several rounds of
retweet, someone presents an attitude of denying
and asks for evidence. Finally, a user comes out
to clarify the real condition and confirm the false-
ness of the source. Suchlike online discussion
is widely existed, however, only a few messages
present these critical roles and the majority are in-
significant reposts and comments. Accordingly,
our goal is to identify triggers, i.e., messages that
have prominent effects on rumor proliferation and
dominate the judgment of cascade credibility. We
also claim that identifying the role-aware propa-
gation mode will contribute to rational and sound
rumor verification.

To practice the idea, we formulate the task of trig-
ger identification and annotate all the messages in
PHEME to form a jointly labeled dataset. Based on
the well-adopted graph learning methods, we fur-
ther put forward the UGRN (Unsymmetric Graph
Recurrent Networks) framework by additionally
considering the direction and interaction of infor-
mation flow to simulate trigger effect. Moreover,
we devise the role-aware integration and warm-up
strategy to facilitate rumor verification.

Our contributions are of three-folds:

• Following the propagation mechanism of ru-
mors, we formulate trigger identification as
a prepositive task of rumor verification and
supplement message-level annotations to the
PHEME dataset.

• What’s more, we design a graph-based frame-
work to jointly identify triggers and ver-
ify rumors by progressively modeling tree-
structured rumor cascades.

• Taking advantage of our annotated dataset, ex-
tensive experiments are conducted and demon-
strate the effectiveness of our model.

2 Related Work

As our research focuses on technically resolving
rumors in social media, we relate it with existing
computational rumor resolution methods and our
motivation for applying graph neural networks.

2.1 Rumor Resolution
Since rumors online are enriched with multi-form
data, early work concentrates on extracting promi-

nent features from perspectives of content, user re-
liability and communication impact (Castillo et al.,
2011; Kwon et al., 2013; Liu et al., 2015). With
deeper understanding of rumor propagation, re-
searchers endeavor to model the whole cascade
considering it as time-series sequences (Ma et al.,
2015, 2016; Yu et al., 2017), tree-structured diffu-
sion networks (Ma et al., 2018b; Kumar and Carley,
2019; Wei et al., 2019; Ma and Gao, 2020; Li et al.,
2020) or the combination of both (Sun et al., 2022).

A remarkable progress lately is to exploit stance
information to enhance rumor verification. Kochk-
ina et al. (2018) treat rumor detection, stance clas-
sification and rumor verification as a consistent
pipeline and confirm the effectiveness of multi-task
learning. Following studies explore various mech-
anism of parameter sharing (Ma et al., 2018a; Wu
et al., 2019) and improve efficiency of data usage
(Yu et al., 2020). However, annotating stances in
all rumor cascades is labor-intensive thus existing
corpus cannot reach a perfect match between stance
and verification data, which requires superior multi-
task training skills and still fails to explain how
stance information instructs rumor verification.

Another trend is to excavate the explainability of
rumor resolution networks. Ma et al. (2019) utilize
hierarchical attention networks to locate eviden-
tial sentences. Lu and Li (2020) employ a graph-
based co-attention model to capture the relevance
between the source text and spreader behavior. Wu
et al. (2020a) select suspicious retweets and ap-
ply co-attention mechanisms to explore their rela-
tionship with the source at token level. Although
these approaches can identify unreliable words, sen-
tences and users, they only practice in range-fixed
and randomly-split corpus making them short of
stability when faced with unknown events.

Recently, researchers attempt to model rumor
cascades based on the widely-existed propagation
mechanism. Wu and Rao (2020) employ gated
mechanisms and devise adaptive interaction fusion
networks to model the emotional associations and
semantic conflicts which rationalize rumor verifica-
tion. Chen et al. (2020a) utilize discrete variational
autoencoders to model interaction between mes-
sages and capture their temporal evolution. Lin
et al. (2021) design hierarchical graph attention
networks to implement claim-guided rumor detec-
tion. Different from their work, our goal is to ex-
plicitly identify critical messages with triggering
effects so that we construct a jointly labeled dataset.
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What’s more, we also investigate how triggers pro-
gressively facilitate rumor resolution.

2.2 Graph Neural Networks

With increasing complexity of data structure and
ingenious construction of intrinsic relation, Graph
Neural Networks (GNNs) have gained incremen-
tal popularity in modeling topological or tree-
structured data (Wu et al., 2020b). Among all the
variants, the basic skeleton Graph Convolutional
Networks (GCNs) exploit structure information to
aggregate and share features of neighbors which
provides a rapid and effective solution for node
classification, link prediction and community de-
tection (Kipf and Welling, 2017). Following works
mainly focus on refined aggregation of adjacent
nodes, such as incorporating attention mechanism
(Velickovic et al., 2018) and sampling neighbors
to avoid over-smoothing and improve computation
efficiency (Hamilton et al., 2017).

Nowadays, GNNs are extensively applied in the
area of natural language processing, ranging from
syntax-based machine translation (Bastings et al.,
2017), knowledge-based question answering (Sax-
ena et al., 2020) and aspect-level sentiment clas-
sification (Chen et al., 2020b). Despite the tree
structure owned by rumor cascades, it is difficult to
model cascades directly via GNNs. On one hand,
propagation graphs present a high level of hetero-
geneity in which neighboring nodes usually possess
different roles, while most GNNs are only effective
for homogenous node classification by sharing mu-
tual features. On the other hand, traditional ways
of entire graph learning apply mean or attention
pooling which is too coarse to capture evolutionary
characteristics of rumor cascades. In this paper,
we come up with an innovative way of message
passing by inheriting the pioneering idea of Gated
Graph Neural Networks (Li et al., 2016) that up-
date node representation via gated recurrent unit,
but also considering the direction and integration
of information flow.

3 Task and Dataset

3.1 Task Formulation

The task of rumor verification is formulated as a
supervised classification problem on the cascade
level. Given a source tweet r0, the tree-structured
cascade can be constructed with its responsive
tweets {r1, r2, ..., rT } following the retweet rela-
tionship while their textual, temporal and user-

related features are available. The goal is to assess
the veracity of the cascade by classifying Yv into
true, false or unverified.

In this paper, we propose a progressive frame-
work to implement trigger identification during
verification which aims at recognizing the role of
each tweet Yt

i as amplify, deny, clarify or null. Am-
plify indicates tweets that initiate new concerns or
enlarge the discussion scale related to the social
event. Deny means presenting doubt or rejection
towards previous messages. Clarify introduces fac-
tual or substantial information. Other messages are
left as null which means they are insignificant for
rumor propagation or verification.

3.2 Dataset Construction

Our corpus is built on PHEME dataset released by
Zubiaga et al. (2016) including TWITTER threads
from 5 hot-debated social events. Although subse-
quently Zubiaga et al. (2018) expand the total event
amount to 9, the additional cascades are small-
scaled and extremely unbalanced, thus we only
consider the original 5 events. They also supple-
ment stance labels on the message level, but only
13% rumor cascades have been annotated limited
by visualization technique and labor resources.

To implement role-aware rumor resolution, we
annotate triggers for all the messages in rumor cas-
cades. The main difference between two types of
message-level labels is that stance just presents
sentiment polarity towards the source tweet, while
triggers imply their global roles for rumor evolution
and are more context-sensitive.

The annotation process consists of three steps.
First, We devise a tree-based annotation system
containing textual information and propagation
path1. We remove cascades that only contain
source tweet and drop messages missing parents.
Second, each cascade is sent to 3 undergraduates
who need to read all the tweets in the cascade to
understand how the circulating story develops, and
then assign trigger labels to messages with criti-
cal roles. We only adopt the label if more than 2
people reach an agreement. Other messages are
labeled as null to ensure the significance of trigger-
ing effects. Finally, we evaluate annotation quality
with Fleiss’s kappa coefficient (Fleiss, 1971) and
achieve a moderate agreement of 0.515. Anno-
tating triggers is challenging because social me-

1http://fudan-disc.com/project/
annotation/propagation/demo.html

http://fudan-disc.com/project/annotation/propagation/demo.html
http://fudan-disc.com/project/annotation/propagation/demo.html
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dia statements are full of abbreviations and slang
words. The incompleteness of cascades caused by
privacy restrictions also impedes global compre-
hension. Statistics of the extended dataset is shown
in Table 1.

event # of # of verify dist. trigger dist.
cas. mes. (F:T:U) (N:A:C:D)

CH 449 6110 114:187:148 4705:915:271:219
OS 467 6036 72:327:68 4793:868:254:121
SS 508 7832 76:378:54 5868:1050:471:443
FG 268 4516 8:9:251 3679:527:181:129
GW 237 2377 111:94:32 1762:388:147:80
All 1929 26871 381:995:553 20807:3748:1324:992

Table 1: Statistics of extended PHEME dataset. The
abbreviation of different events is in short of Charlie
Hebdo, Ottawa Shooting, Sydney Siege, Ferguson Un-
rest, Germanwings Crash respectively. The next two
columns represents the amount of cascades and mes-
sages involved in different events. As for distribution of
verification and trigger labels, capital letters stand for
possible categories (F: false, T: true, U: unverified, N:
null, A: amplify, C: clarify, D: deny).

3.3 Data Analysis

For purpose of exploring how triggers interact with
neighbors and affect rumor proliferation, we ana-
lyze their contextual content continuity and capture
their temporal characteristics as rumor develops.

Content Continuity. Since triggers are assumed
to be more context-sensitive, we attempt to measure
the similarity between successive messages using
the ratio of overlapped word count to the longer
sentence length. As propagation is irreversible,
we differentiate the information flow either from
parent nodes or child nodes. Specifically, after cal-
culating the similarity of all the message pairs, we
take the average of child posts as the similarity with
children. Figure 2 shows the content continuity for
different types of triggers in different events.

Null Amplify Deny ClarifyNull Amplify Deny ClarifyNull Amplify Deny ClarifyNull Amplify Deny ClarifyNull Amplify Deny Clarify

0.100
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Null Amplify Deny ClarifyNull Amplify Deny ClarifyNull Amplify Deny ClarifyNull Amplify Deny ClarifyNull Amplify Deny Clarify
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0.125

0.150

0.175

0.200
Similarity with Children

OS CH SS GW FG

Figure 2: Context similarity for different types of trig-
gers in different events. Scatter points represent the
averaged context similarity for a certain kind of trigger
in a specific event. Shapes of boxes depict the degree of
trigger assimilation for different events.

It shows that triggers with different background
tend to possess similar continuity property as the
length of all the boxes is comparatively short. The
type of amplify holds higher probability to bring
information novelty compared with its parent and
launch discussion associated with it, while the null
type is totally on the contrary. Words in deny posts
are less repeated in parent and child message. Posts
of clarify present a moderate similarity with both
parent and children partly because factual infor-
mation is usually targeted towards the preceding
content but also provides hints for further debate.

In addition, we can observe that the property of
triggers is naturally endowed no matter what social
event they are related to, and the same for their prior
categorical distribution (shown in Table 1). Hence,
we consider triggers hold higher transfer ability
focusing on the universally existed propagation
patterns instead of concrete topics or stories, which
is helpful to debunk rumors nonexistent in history.

Temporal Variation. In order to investigate what
role triggers play for verifying rumors, we calcu-
late the amount of triggers in different diffusion
stages. To ensure the amount declination is not
from cascades rather small, we select 1,297 cas-
cades whose conversation last for more than 30
minutes and count the number of different triggers
in every 3 minutes. Then we count how many trig-
gers of a certain type emerge in each evolution
stage for every cascade. As shown in Figure 3, the
y-axis represents the averaged number of specific
triggers for each cascade in the time interval.
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Figure 3: Temporal variation of trigger distribution.
Each subgraph represents a certain kind of trigger. Dif-
ferent line styles stand for the category of rumors.

On the whole, the majority of discussion burst
in early stages. Except the amplify, other types
of triggers are distinguishable in different rumors.
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Amount of null is relatively small in misinforma-
tion especially in early stages which means there
exist more triggering posts arguing about cascade
veracity. Deny and clarify appear more frequently
in false rumors, while clarify takes longer time to
fade away. With all the findings, we assume trigger
identification as an effective way to promote verifi-
cation and generalization for rumor resolution.

4 Proposed Model

Based on observations in previous section, we pro-
pose the Unsymmetric Graph Recurrent Networks
(UGRN) to identify triggers and progressively ver-
ify rumors. Figure 4 illustrates the overall archi-
tecture which is composed of two components, the
sharing GRN layers of two tasks and the trigger-
aware prediction module.

4.1 Unsymmetric Graph Recurrent Networks

We use pretrained model to encode textual infor-
mation for each tweet, and then decompose the
propagation tree as two unsymmetric adjacency
matrix to employ different GRN layer for interac-
tion direction control.

Graph Initialization. Following the online con-
versational records, each rumor cascade can be con-
structed as a graph G = (V, E) where V represents
the set of nodes (messages in this circumstance)
and E represents the set of edges (retweet relation-
ship). Node representation is initialized via the
pretrained BERTweet (Nguyen et al., 2020) and
fine-tuned afterwards. We directly take the final
representation of [CLS] token s as the semanti-
cally meaningful features of sentences.

Structure Decomposition. After representing
messages with pretrained model, node attributes
X ∈ Rd×|V| can be obtained by concatenating
{s1, s2, ..., s|V|}, where d is the dimension of
sentence embedding and |V| represents the total
amount of tweets in the cascade.

Generally, edges are represented with a sym-
metric adjacency matrix A ∈ R|V|×|V|, where
Aij = Aji = 1 if there exists an edge between
node i and j. However, implementing graph convo-
lution in this way ignores the direction of informa-
tion flow which is assumed prominent for classify-
ing triggers (denoted in section 3.3). Therefore, we
differentiate direction of information flow by de-
composing the original adjacency matrix into two
unsymmetric matrices Ap and Ac, where Ap

ij = 1

if child node i is connected with parent node j and
Ac

ij = 1 if parent i is connected with child j.
Since the decomposed adjacency matrix is sparse

especially for tree-structured data, we add self-
loops to the root (the source tweet) in Ap and all
the leave nodes (the last tweet of propagation path)
in Ac to ensure the sum for each row is larger than
0, thus can be divided for normalization. Figure 4
shows a concrete case to construct Ap and Ac for
a specific cascade. Then we employ unsymmetric
normalized transformation Âp = (Dp)−1Ap and
Âc = (Dc)−1Ac to avoid value scale changing
after graph convolution, where Dp,Dc ∈ R|V|×|V|

are the diagonal degree matrices where Dii equals
to the row sum of the adjacency matrix.

Graph Reccurent Networks. Our GRN layer is
based on the idea of Gated Graph Neural Networks
(Li et al., 2016) but we also employ efficient way of
graph convolution (Kipf and Welling, 2017). The
GRNs can be extended to L layers, the lth GRN
layer (l ∈ [1, L]) can be represented as follows.

First, we utilize the normalized unsymmetric
adjacency matrix (Âp for example) to aggregate
neighbor information from the top-down direction
to acquire the intermediate state for node i,

h
(l−1),p
i,p =

∑
j∈{j|Âp

ij ̸=0}

Âp
ijh

(l−1),p
j (1)

where h with a subscript of p means the interme-
diate information aggregated from parent and the
right h without p as subscript is the final output of
the (l − 1)th GRN layer.

Then we employ the Long Short-Term Memory
unit (Hochreiter and Schmidhuber, 1997) to recur-
rently implement graph convolution and obtain the
output hl,p

i of lth GRN layer,

f l
i = σg

(
W fh

(l−1),p
i + Ufh

(l−1),p
i,p + bf

)
(2)

ili = σg

(
W ih

(l−1),p
i +U ih

(l−1),p
i,p + bi

)
(3)

ol
i = σg

(
W oh

(l−1),p
i +U oh

(l−1),p
i,p + bo

)
(4)

c̃li = σc

(
W ch

(l−1),p
i +U ch

(l−1),p
i,p + bc

)
(5)

cli = f l
i ◦ c

(l−1)
i + ili ◦ c̃li (6)

hl,p
i = ol

i ◦ σc
(
cli

)
(7)

where W ∈ Rm×h, U ∈ Rm×h and b ∈ Rh (m is
the input size and h is the hidden size) are weight
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Figure 4: Overall architecture of our proposed model. The two squares on the left represent the decomposed
adjacency matrices Ap and Ac that control the direction of information flow. Both of the two tasks share the
unsymmetric GRN Layers. The updated node representation is used to predict trigger labels. Role-aware integration
mechanism is then applied to acquire cascade representation and produce verification prediction.

matrices and bias vector, σg and σc represent sig-
moid and hyperbolic tangent activation functions.

Computing hl,c
i which integrates information

from child nodes is identical. Afterwards, we con-
catenate the representation from parent and chil-
dren to obtain updated node states h1

i , while 1 de-
notes that we only adopt one layer of GRN.

4.2 Progressive Prediction

After obtaining the node representation associated
with message interaction, we implement node clas-
sification to identify triggers and then exploit trig-
ger prediction to integrate nodes and make role-
aware verification on cascade level.

Trigger Identification. We simply apply a Feed
Forward Network (FFN) and softmax operator to
classify each node.

Yt
i = softmax(FFN(h1

i )) ∈ R4 (8)

The loss function of trigger identification is com-
puted by cross-entropy criterion,

Lt = − 1

|V|

|V|∑
i

Lt∑
j

Yt,j
i log Ŷt,j

i (9)

where Lt is the number of trigger classes, Ŷt,j
i

represents the ground-truth label of trigger.

Role-Aware Verification. Since we assume that
triggers play an important role in rumor verification,
we briefly design a trigger-informed and role-aware
pooling mechanism that attends more to triggering

posts when integrating the whole cascade. Intu-
itively, we calculate the weight of each post by dot
product to weaken the impact of null messages.

ai =
[
0 1 1 1

]
Yt
i (10)

Then we apply softmax to normalize attention
weights in the cascade and sum up representa-
tions of all the nodes considering their role-aware
weights to obtain the cascade representation c.

c =

|V|∑
i

aih
1
i (11)

Similarly, we make verify prediction and com-
pute the loss function for verification,

Yv = softmax(FFN(c)) ∈ R3 (12)

Lv = −
Lv∑
j

Yv,j log Ŷv,j (13)

where Lv is the number of verification classes, Ŷv,j

represents the actual label.

Jointly Learning. We add two loss terms to ob-
tain a joint loss function L for optimization.

L = Lt + Lv (14)

Moreover, we adopt a warm-up strategy that only
reserves Lt in the first few rounds of training and
then employs the overall loss L to test the validity
of progressive learning.



2754

5 Experiments

5.1 Experimental Setup

Data Split. Based on our dataset, we adopt 2
types of cross validation to compare performance
and generalizaiton ability of different models. (1)
Random: to split the dataset into train, validation
and test set with a proportion of 8:1:1 randomly.
(2) LOEO: to implement leave-one-event-out cross
validation (Kochkina et al., 2018) which means
to treat data equally drawn from a target event as
test and validation set and leave others as train
set. Although model performance is usually un-
satisfactory to implement LOEO validation since
semantics differs a lot between events, it is more
representative of real world when unprecedented
event emerges.

Model Comparison. We compare various mod-
els by replacing node updating module with follow-
ing methods:

CNN: A CNN-based model (Yu et al., 2017) to
extract informative local comment.

RNN: A RNN-based model (Ma et al., 2016)
that treats rumor cascade as time series to capture
dynamic signals.

TreeLSTM: A treeLSTM-based network (Ku-
mar and Carley, 2019) to encode propatation tree.

TreeTrans: A model (Ma and Gao, 2020) using
transformer to recursively update tree nodes.

GCN: A GCN-based model (Wei et al., 2019)
first treating propagation trees as graphs.

GraphSage: A graph-based model (Li et al.,
2020) that randomly samples neighbors to aggre-
gate contextual information.

UGRN: Our proposed model.

Implementation Details. The network is trained
with AdamW optimizer (Loshchilov and Hutter,
2017). Hyperparameters performing best in vali-
dation set are recorded for testing. The batch size
(number of cascades) is set as 5. The hidden unit
size for GRN is set as 300. We adopt initial learning
rate of 8e-5, 2e-5 respectively for trigger classifier
layers and others. The maximum number of train-
ing epochs is 100. We have made our extended
dataset2 and code3 publicly available.

2http://fudan-disc.com/data/PHEME_
trigger.zip

3https://github.com/lchen96/trigger_
identification

5.2 Overall Performance

We implement the task of trigger identification and
rumor verification to evaluate the performance of
our proposed model, as shown in Table 2. Since
these two tasks are both evil-balanced, we choose
macro F1-score to compare model performance.

Method Trigger Verify
Random LOEO Random LOEO

CNN 0.524 0.501 0.741 0.308
RNN 0.562 0.560 0.785 0.314
TreeLSTM 0.538 0.514 0.710 0.317
TreeTrans 0.541 0.511 0.714 0.314
GCN 0.548 0.542 0.772 0.322
GraphSage 0.549 0.561 0.781 0.304
UGRN 0.574 0.570 0.819 0.346

Table 2: Results of trigger identification and rumor
verification. All the numerical values represent macro
F1-score when adopting random or LOEO cross valida-
tion. The result of LOEO validation is the average of 5
folds. Bold: the best performance in each column.

It can be seen that our model can identify triggers
more accurately and achieves the highest macro
F1-score for verification. Considering the task
of trigger identification, CNN model provides
the baseline for trigger identification using pre-
trained sentence representation for classification
(since features are not updated on message level
and pooling for nodes is not applied). Models
with reccurent unit (UGRN, RNN and TreeL-
STM) is more competitive for trigger identifica-
tion. Compared with the other two graph-based
models (GCN and GraphSage), our unsymmetric
and recurrent framework can model conversational
structures and learn high-quality representation of
triggering posts while preserving the effective op-
eration of graph convolution. As for the task of
rumor verification, models all present a drastic
decline faced with LOEO test. The direct reason
probably lies in the extreme imbalance of verify
labels between different events and the absence of
semantic sharing.

Besides, by comparing the performance between
different settings of cross validation, we find that
trigger identification is more robust when coming
cross underrepresented semantics as the decrease
in LOEO setting is not as significant as the task of
verification. The direct reason probably lies in the
extreme imbalance of verify labels between differ-
ent events, but we do expect trigger identification
to have higher transfer ability which can facilitate
handling unprecedented rumor cascades.

http://fudan-disc.com/data/PHEME_trigger.zip
http://fudan-disc.com/data/PHEME_trigger.zip
https://github.com/lchen96/trigger_identification
https://github.com/lchen96/trigger_identification
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5.3 Ablation Study
To examine the effectiveness of key components of
our UGRN framework, we perform ablation study
by degrading the birectional graph-based node rep-
resentation, as shown in Table 3. From bottom
to top, we first substitute the concatenated node
representation by only using parent aggregation
(UGRN-p) or child aggregation (UGRN-c). The
performance drops a lot when only considering in-
formation flow in one direction. Then we leave out
the process of structure decomposition and directly
use the symmetric adjacency matrix to apply re-
current graph convolution. The simplified model
(GRN) can hardly distinguish triggers indicating it
is valid to model information flow from different
directions.

Component Trigger Verify
Random LOEO Random LOEO

GRN 0.531 0.514 0.754 0.324
UGRN-c 0.541 0.522 0.768 0.321
UGRN-p 0.552 0.541 0.778 0.334
UGRN 0.574 0.570 0.819 0.346

Table 3: Ablation study on key components of UGRN.
Presentation of result is the same with Table 2.

5.4 Trigger Role for Verification
In this paper, we propose three types of mecha-
nisms to exploit trigger information for enhanced
rumor verification, including parameter sharing,
trigger-aware cascade pooling and warm-up of trig-
ger identification. We examine the effect of these
mechanisms to investigate the role of triggers.

Multi-Task Learning. We run our model on the
two tasks separately to demonstrate the validity of
multi-task learning. Table 4 shows the comparison
between single-task and multi-task settings. As can
be seen, the performance gain of multi-task learn-
ing is significant especially for the task of rumor
verification which demonstrates the strong correla-
tion between these two tasks and the rationality of
capturing triggers.

Task Trigger Verify
Random LOEO Random LOEO

Trigger 0.568 0.558 - -
Verify - - 0.795 0.286
Multi-Task 0.574 0.570 0.819 0.346

Table 4: The effect of multi-task learning framework.
Presentation of result is the same with Table 2.

Role-Aware Integration. Our model is designed
to pay more attention to messages with triggering
effect when implementing graph pooling. We re-
place the role-aware integration with general atten-
tion pooling to explore whether triggers can help
verify rumors. Figure 5 shows the difference when
converting the pooling strategy in different cascade
modeling methods. Although the performance con-
trast is not as obvious as multi-task learning, among
these 12 groups of experiments, 9 instances demon-
strate role-aware integration is better than plain
attention pooling which also covers that locating
triggers and take full advantage of their semantics
is favorable for rumor verification.
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Figure 5: The effect of role-aware integration.

Trigger Warmup. During training, we adopt a
warm-up strategy that only trains the network for
trigger identification in the first few epochs. Conse-
quently, we set various number of warm-up epochs
to see the effectiveness of progressive learning.
Figure 6 shows the impact of trigger warm-up in
different validation settings. For random valida-
tion, 1 rounds of warm-up can slightly improve the
verification performance but then the prediction
precision drops a lot as warm-up epochs increase.
However, the averaged performance of LOEO val-
idation is steadily increasing with increment of
warm-up epochs. Except when treating Charlie
Hebdo as test event, other folds perform better with
larger warm-up epochs. This is partly because the
network tends to learn refined node representation
under the supervision signal of triggers and pro-
vides better initialization for verification.
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Figure 6: The effect of trigger warm-up strategy. Blue
solid lines represent the averaged result and the dashed
lines stand for results with different test event.
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6 Conclusion and Future Work

In this paper, we propose the task of trigger identifi-
cation to progressively resolve rumors. We extend
PHEME dataset with annotations on message level.
We design the framework of Unsymmetric Graph
Reccurent Networks which significantly improves
performance of two tasks. In the future, we would
like to further model the relationship between trig-
gers and rumor cascades.
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